Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Tritium distribution in JT-60U W-shaped divertor

Masaki, Kei; Sugiyama, Kazuyoshi*; Tanabe, Tetsuo*; Goto, Yoshitaka*; Miyasaka, Kazutaka*; Tobita, Kenji; Miyo, Yasuhiko; Kaminaga, Atsushi; Kodama, Kozo; Arai, Takashi; et al.

Journal of Nuclear Materials, 313-316, p.514 - 518, 2003/03

 Times Cited Count:55 Percentile:94.9(Materials Science, Multidisciplinary)

Detailed tritium profiles on the JT-60U W-shaped divertor and first wall tiles were examined by Tritium Imaging Plate Technique (TIPT) and full combustion method. The tritium deposition image obtained by TIPT was consistent with the distribution measured by combustion method. The highest tritium concentration was 60 kBq/cm$$^{2}$$ at the dome top tile. However, deposition layer was not obviously observed on the dome top tile. The tritium concentration in the inner divertor target tile was lower (2 kBq/cm$$^{2}$$) even with the thick deposition layer of $$sim$$60 $$mu$$m. This tritium distribution can be explained by energetic triton particle loss due to ripple loss. According to the simulation using the OFMC code, 31% of the triton particles produced by D-D nuclear reaction is implanted deeply to the wall without fully losing the initial energy of 1 MeV.

Journal Articles

Design of an anti-compton spectrometer for low-level radioactive wastes using Monte Carlo techniques

Tsutsumi, Masahiro; Oishi, Tetsuya; Kinouchi, Nobuyuki; Sakamoto, Ryuichi; Yoshida, Makoto

Journal of Nuclear Science and Technology, 39(9), p.957 - 963, 2002/09

 Times Cited Count:4 Percentile:23.39(Nuclear Science & Technology)

An anti-Compton spectrometer with semi-2$$pi$$ Compton suppression is designed to identify the photons emitted from low-level radioactive wastes from radioisotope usage and nuclear research laboratory. Since the objective sample is massive and large, the system has a full opening towards the sample position. The characteristics and features of the system concerning Compton suppression and reduction of the background component due to natural radioactive source are estimated by the Monte Carlo simulations. The anti-Compton technique is shown to be quite advantageous for the reduction of the surrounding natural background radiation, as well as the suppression of the background for the higher energy photons.

Journal Articles

Core calculation of the JMTR using MCNP

Nagao, Yoshiharu

JAERI-Conf 2000-018, p.156 - 167, 2001/01

no abstracts in English

JAEA Reports

Neutron response analysis of wide range detector in High Temperature Engineering Test Reactor (HTTR)

Murata, Isao; Yamashita, Kiyonobu; Shindo, Ryuichi; Shiozawa, Shusaku; *

JAERI-Tech 95-036, 101 Pages, 1995/07

JAERI-Tech-95-036.pdf:2.46MB

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1